Przydatność 55%

Surowce energetyczne - węgle kopalne, ropa naftowa, gaz ziemny.

Autor: bartekpr

Do surowców energetyczny zaliczamy te, z których potrafimy uzyskać energię, a więc: węgle kopalne, ropa naftowa i gaz ziemny.
Węgiel kamienny powstał z martwych szczątków roślin w wyniku złożonych przemian biochemicznych, geofizycznych i geochemicznych w okresie karbonu, permu i trzeciorzędu. Rozkład biochemiczny szczątków roślinnych torfowiska jest wypadkową wielu procesów fizykochemicznych i reakcji chemicznych przy udziale bakterii, grzybów i enzymów. Przebieg tego procesu ma ogromny wpływ na skład petrograficzny węgla. Rozróżnia się cztery rodzaje skał węglowych (makrolitypy): węgiel błyszczący, półbłyszczący, matowy i włóknisty. Skała węglowa składa się w 75 - 95% z C, 2,5 - 5,5% z H, 2,5 - 18% z O, z S, N i innych składników mineralnych w mniejszej ilości, oraz z wody (1 - 8%). Pewna część węgla występuje w przyrodzie w formie bardzo skoncentrowanej, mianowicie w postaci kopalnych paliw, które tworzyły się w ciągu milionów lat. Stanowiąc akumulację energii słonecznej. Do kopalnych paliw stałych należą: torf, węgiel brunatny, węgiel kamienny, łupki i bitumiczne. Koks jest produktem zawierającym do 94% węgla. Co roku wytwarza się znaczne jego ilości, by zaspokoić potrzeby metalurgii. Koks otrzymuje się przez ogrzewanie węgla kamiennego w piecach bez dostępu powietrza. Po rozkładzie zanieczyszczeń i odgazowaniu pozostaje prawie czysty węgiel.
Węgiel jest pierwiastkiem najczęściej występującym w przyrodzie. Zajmuje w układzie okresowym pierwiastków położenie szczególne, przejściowe od metali do metaloidów. Jest ciałem stałym, z grupy węglowców, niemetalem, nie rozpuszcza się w wodzie, kwasach i zasadach. Węgiel najczęściej jest spotykany w formie kopalnej. Oprócz węgla w pokładach kopalnych występuje także wodór, tlen, siarka i azot. W zależności od substancji roślinnych, z których powstał węgiel wyróżniamy: węgle humusowe, najczęściej spotykane, powstały na terenach torfowisk z szczątków roślin lądowych, węgle sapropelowe, które powstały z roślin morskich, głównie glonów, oraz węgle liptobiolitowe, powstałych głownie z związków żywicznych roślin. Ze względu na procentową zawartość węgla wyróżnia się: torf, węgiel brunatny, węgiel kamienny, oraz antracyt i szungit. Największą zawartość węgla ma sztungit. Jest najstarszym węglem kopalnym. Zawartość węgla wynosi 98,2%. Występuje w okolicach jeziora Onega w Rosji, w Szwecji, Kanadzie i w Indiach. Jest wykorzystywany w przemyśle chemicznym. Po szungicie najwięcej węgla zawiera Antracyt(94-96%). Jest głównie używany do wyrobu elektrod i jako surowiec energetyczny. Następny jest węgiel kamienny, zawierający od 78 do 92% węgla. Jest najliczniej spotykanym węglem kopalnym. Używa się go głównie jako surowca energetycznego oraz do otrzymania koksu, smoły, benzyny, gazów. Występuje głównie w Rosji, na Ukrainie, w USA, Kanadzie, Niemczech, Wielkiej Brytanii, oraz w Polsce na Śląsku. Po węglu kamiennym jest węgiel brunatny. Zawiera 65 do 75 procent czystego węgla. Jest przede wszystkim surowcem energetycznym ale służy także do wytwarzania, smoły wylewnej, benzyny, olejów opałowych i smarów. Najmniejsza liczba czystego węgla jest w torfie, który zawiera mniej niż 60 procent tego pierwiastka, gdyż jest to produkt częściowego rozkładu roślin w warunkach nadmiernej wilgotności. Stosowany jest jako paliwo, kompost, oraz w ogrodnictwie i leśnictwie. Zawartość węgla w skorupie ziemskiej jest stosunkowo nieduża. Węgiel zajmuje 12 miejsce i stanowi zaledwie 0,009% skorupy ziemskiej. Rola węgla w przyrodzie jest olbrzymia, przede wszystkim dlatego, że jest on podstawowym pierwiastkiem wszystkich związków organicznych.. Formy występowania w przyrodzie są bardzo różnorodne. Występuje jako zasadniczy składnik we wszystkich tkankach żywych organizmów, występuje w produktach przemiany oraz produktach rozkładu substancji organicznej, ponadto występuje w atmosferze i hydrosferze w postaci dwutlenku węgla. Tlenek węgla, CO, jest powszechnie znany jako trujący gaz powstający w wyniku niecałkowitego spalania węgla lub paliw węglowodorowych, np. gazu ziemnego i benzyny. Węgiel występuje także w formie alotropowej, czyli jako sam pierwiastek w różnych formach. Najczęściej potykaną formą alotropową jest grafit. Grafit występuje jako szary lub czarny minerał głównie w łupkach grafitowych. Jest Miękki, mało aktywny chemicznie, dobrze przewodzi prąd. Ma gęstość równą 2,3 g/cm3 . Może także być otrzymywany sztucznie. Używany jest do wyrobu ołówków, tuszu, elektrod, a także używa się go w reaktorach jądrowych. Drugą formą alotropową węgla jest diament. Jest to najtwardszy minerał i zarazem najcenniejszy kamień szlachetny. Jest najczęściej bezbarwny, ale bywa także żółty oraz błękitny. Diament ma bardzo silny połysk, oraz bardzo mocno załamuje światło. Jest także tworzony syntetycznie z węgla w temperaturze ok. 3000oC i ciśnieniu 10 000 atmosfer. Diamenty są wykorzystywane głównie w jubilerstwie oraz przemyśle. Występują głównie w RPA, Rosji, Indiach, Brazylii oraz Nambii.
Ostatnią formą alotropową węgla jest Flueren. Flueren nie występuje w przyrodzie, można go otrzymać przez odparowanie grafitu w próżni lub gazie obojętnym. Jest zbudowany z parzystej liczby atomów węgla. Jego wzór to CN gdzie N jest ilością atomów węgla w cząsteczce. Najczęściej N ma wartość 60 i 70. Za największą do tej pory zaobserwowaną cząsteczką jest C960. Z węgla w procesie suchej destylacji, inaczej nazywanej odgazowywaniem węgla możemy uzyskać koks, który jest wysokoenergetycznym paliwem o zawartości węgla pierwiastkowego do 96%. Koks jest wykorzystywany głównie w metalurgii, jako paliwo, do wytwarzania karbidu oraz surowiec chemiczny. Proces suchej destylacji węgla polega na ogrzewaniu węgla bez dostępu powietrza w temperaturze 900–1300 OC (koksowanie), lub 500-600 OC (wytlewanie). W wynik procesu otrzymuje się koks, albo półkoks, oraz liczne produkty uboczne w formie ciekłej (smoła węglowa, woda pogazowa), oraz gazowej (gaz węglowy, koksowniczy). Atomy węgla występują także w cząsteczkach gazu ziemnego i ropy naftowej, które są także zaliczane do minerałów.
Węgiel kamienny, jako surowiec stały, nie wydostaje się samoczynnie na powierzchnię ziemi. Metoda wydobycia węgla zależy od głębokości zalegania jego pokładów . Wyróżnia się dwa podstawowe typy kopalni: podziemne i odkrywkowe. Kopalnie podziemne - jest to system tuneli przecinających złoże. Najgłębsze kopalnie znajdują się w RPA (3500 m głębokości). Metoda odkrywkowa polega na stopniowym odkrywaniu wierzchnich warstw pokrywających pokład węgla i stosowana jest w przypadku zalegania węgla na niewielkiej głębokości. Kopalnie odkrywkowe stanowią duże zagrożenie dla środowiska, ze względu na nieodwracalne zmiany terenu, jakie powoduje ta metoda wydobycia.
Zasoby węgla kamiennego, zalegające w dwóch zagłębiach, Górnośląskim i Dolnośląskim, obejmują węgle różnych typów. Są tam węgle energetyczne zdające się do zużycia w paleniskach przemysłowych i domowych oraz generatorach. Węgiel brunatny rozciąga się między Wartą i górnym biegiem Nysy. Zasoby są tam szacowne na wiele miliardów ton.

Ropa naftowa, to ciekła, naturalna mieszanina węglowodorów parafinowych (alkany), naftenowych (cykloalkany) i aromatycznych (areny); zawiera także org. związki siarki, tlenu, azotu, związki metaloorg. oraz składniki mineralne: związki żelaza, krzemu, wanadu, sodu, niklu i innych metali; ma barwę żółtobrunatną, zielonkawą lub czarną, bardzo rzadko bywa bezbarwna lub czerwonawa; gęstość 0,73–0,99 g/cm3, wartość opałowa 38–48 MJ/kg.
Głównym składnikiem lżejszych frakcji ropy naftowej (wrzących w temp. do 200C) są węglowodory parafinowe, udział ich zmniejsza się we frakcjach wrzących w wyższej temperaturze; zawartość węglowodorów naftenowych wzrasta ze wzrostem temp. wrz. frakcji ropy naftowej, najwięcej jest ich we frakcjach olejowych, wrzących powyżej 350C; węglowodory aromatyczne występują we wszystkich frakcjach ropy naftowej, a udział ich rośnie wraz ze wzrostem temp. wrz. frakcji; im wyżej wrząca frakcja ropy naftowej, z tym większej liczby pierścieni są zbudowane cząsteczki wchodzących w jej skład węglowodorów aromatycznych. Tlen w ropie naftowej występuje w kwasach naftenowych i tłuszczowych, fenolach, żywicach, asfaltach; azot — gł. w aminach cyklicznych i acyklicznych; siarka — w postaci siarkowodoru, sulfidów, disulfidów, tioli, a także jako rozpuszczalna siarka elementarna; zależnie od zawartości siarki ropę naftową dzieli się na: niskosiarkową (o zawartości siarki do 0,5%) i wysokosiarkową (powyżej 0,5%); zawartość siarki w niektórych gatunkach ropy naftowej dochodzi do 6%. Ze względu na typ związków chemicznych przeważających w ropie naftowej rozróżnia się najczęściej ropę bezparafinową, parafinową, naftenową, aromatyczną. Istnieją 2 grupy teorii dotyczących pochodzenia ropy naftowej. Teorie o jej nieorganicznym pochodzeniu, (których twórcami są m.in. D.I. Mendelejew 1877, A.D. Ross 1891, H. Moissan 1896, N.A. Kudriawcew 1951, P.N. Kropotkin 1955) zakładają, że ropa naftowa powstaje w wyniku reakcji chemicznych zachodzących w głębi Ziemi, np. wskutek działania wody na węgliki metali ciężkich, w następstwie polimeryzacji gazów wydzielających się z jądra Ziemi; niektóre z tych teorii wiążą powstanie ropy naftowej z magmami zasadowymi. Teorie o nieorganicznym pochodzeniu ropy naftowej nie znalazły wielu zwolenników. Przeważająca większość badaczy przyjmuje teorie o jej organicznym pochodzeniu (stworzone m.in. przez B. Radziszewskiego 1877, K. Englera i H. Hfera 1890, J.E. Hackforda 1932, D. White'a 1935), w myśl których ropa naftowa powstaje przez przeobrażenie szczątków roślinnych i zwierzęcych nagromadzonych wraz z drobnymi okruchami mineralnymi w osadach mor.; czynnikami powodującymi przejście substancji organicznych w bituminy (ropa naftowa, gaz ziemny, asfalt i ozokeryt) są: środowisko redukujące, odpowiednie — temperatura i ciśnienie, działalność bakterii, oddziaływanie pierwiastków promieniotwórczych i innych. Głównym produktem przeobrażeń substancji organicznych jest kerogen, z którego pod wpływem procesów diagenezy i metamorfizmu powstaje ropa naftowa (i gaz ziemny). Powstawanie i nagromadzenie ropy naftowej jest związane z istnieniem sedymentacyjnych basenów ropo- i gazonośnych, wykazujących tendencję do obniżania się w stosunku do sąsiednich obszarów, zazwyczaj przez kilka okresów geologicznych; osady i skały zawierające szczątki organiczne mogły w trakcie osiadania osiągnąć strefy, w których temperatura i ciśnienie umożliwiły przekształcenie ich w składniki ropy naftowej. Pod względem tektonicznym rozróżnia się m.in. baseny śródplatformowe, śródfałdowe, fałdowo- platformowe oraz przyoceaniczne platformowe. Rozpoznano ok. 350 basenów roponośnych (powierzchni największych od 10 tys. km2 do ok. 500 tys. km2), w tym ok. 150 basenów o znaczeniu przemysłowym (opłacalne wydobycie). Skałami macierzystymi ropy naftowej mogą być skały ilaste lub węglanowe, zawierające powyżej 0,5% kerogenu. Pod wpływem ciśnienia warstw stopniowo nagromadzających się w nadkładzie skały macierzystej i innych czynników (zmiany temperatury, ruchy górotwórcze) ropa naftowa może uwalniać się z miejsc gdzie powstawała, migrować i nagromadzać w skałach porowatych lub silnie spękanych, zwanych kolektorami; do najważniejszych z nich należą wapienie i dolomity, w których występuje prawie połowa geologicznych zasobów ropy naftowej, a także osady piaszczyste, piaskowce i łupki. Powstanie złoża ropy naftowej (nagromadzenie ropy w warstwie przepuszczalnej wraz z towarzyszącym jej gazem ziemnym, a często i wodą) jest uwarunkowane występowaniem odpowiednich struktur geologicznych (antyklina, monoklina, uskok, wysad solny), umożliwiających zatrzymanie ropy w kolektorze przez warstwy nieprzepuszczalne (tzw. ekran), którymi są przeważnie iły, łupki ilaste, margle, kwarcyty. W antyklinach i innych strukturach geologicznych często występuje wiele złóż tworzących rozległe pola naftowe. Złoża ropy naftowej występują w utworach od kambru do trzeciorzędu, głównie w utworach mezozoicznych (ponad 50% odkrytych złóż) i trzeciorzędowych (ok. 25%).
Ropę naftową i asfalt znano już kilka tys. lat temu, w starożytności ropę wykorzystywano m.in. do balsamowania ciał, oświetlania, w celach leczniczych oraz w technice wojennej (m.in. płonące strzały, tzw. ogień grecki — mieszanina ropy naftowej, siarki i wapna zapalająca się
w zetknięciu z wodą); najczęściej wydobywano ją z b. płytkich otworów albo zbierano z powierzchni w miejscu naturalnego jej wypływu z warstwy roponośnej bądź szczeliny.
Ropa naftowa powstaje w wyniku przeobrażenia szczątków organicznych nagromadzonych w skałach osadowych, głównie pochodzenia morskiego. Procesy przemian substancji organicznych w kerogen, a następnie w ropę naftową, gaz ziemny i inne bituminy, zachodzą pod ciśnieniem skał nadkładu, w podwyższonej temperaturze; niekiedy znaczną rolę w przebiegu tych procesów przypisuje się bakteriom. Ropa naftowa przemieszcza się (migruje) ze skał macierzystych (zwykle ilastych) ku górze; mechanizm tej migracji nie został dotąd w pełni wyjaśniony. Przemieszczanie się ropy naftowej możliwe jest tylko w skałach silnie porowatych lub spękanych (tzw. skały zbiornikowe lub kolektory); złoża ropy powstają w miejscach, gdzie skały te przykryte są od góry skałami nieprzepuszczalnymi (tzw. Pułapki ropy naftowej), co uniemożliwia dalszą migrację ropy ku górze. Typowe pułapki ropy naftowej powstają w antyklinach, przy uskokach, przy słupach solnych, a także w soczewkach skał przepuszczalnych otoczonych skałami nieprzepuszczalnymi.
Ropę naftową obrabia się w dwojaki sposób: poprzez destylację frakcyjną lub kraking. Kraking polega na rozrywaniu długich łańcuchów węglowodorowych na łańcuchy krótsze, mniej skomplikowane w drodze rozkładu termicznego lub katalitycznego. Kraking ma bardzo duże znaczenie w przemyśle rafineryjnym i petrochemicznym. Otrzymane w procesie krakingu benzyny odznaczają się wysoką liczbą oktanową, a otrzymane gazy zawierają dużo węglowodorów nienasyconych, które są ważnym surowcem w syntezie chemicznej. Kraking termiczny przeprowadzany jest w temperaturze 400 - 700oC i pod ciśnieniem do 50 at. (5 MPa).
Destylacja frakcyjna wykorzystuje fakt, że wrząca mieszanina ciekła wysyła parę o innym składzie niż skład mieszaniny ciekłej. Skraplając pary wydzielające się z wrzącej cieczy otrzymuje się szereg frakcji destylatu
o innym składzie niż skład cieczy destylowanej. W celu uzyskania większej czystości (lepszego oddzielenia) destylatu stosuje się proces wielokrotnej destylacji - rektyfikację. Pozwala to na uzyskanie frakcji różniący się temperaturą wrzenia o 1 - 2oC. W przypadku ropy naftowej temperatury wydzielania odpowiednich frakcji wynoszą: <110oC dla gazów opałowych, 110oC dla benzyny i paliw silnikowych, 180oC dla nafty, 260oC dla olejów opałowych i >340oC dla bitumów (smoła, asfalt, masy bitumiczne). Wydajność destylacji we współczesnych rafineriach wynosi 100 000 baryłek (16 000 000 litrów) destylatu w ciągu doby.
Produkty obróbki ropy naftowej wykorzystuje się jako surowce energetyczne (gazy opałowe, benzyna, olej napędowy), w przemyśle chemicznym, jako smary, do budowy dróg, nawierzchni bitumicznych itp.
Procesy technologiczne, którym poddaje się ropę naftową w celu otrzymania z niej różnych produktów; do najważniejszych produktów przeróbki ropy naftowej należą:
1) Paliwa — gaz płynny, benzyna samochodowa i lotnicza, nafta, olej napędowy, oleje opałowe;
2) Oleje smarowe;
3) Gaz parafinowy, z którego otrzymuje się parafinę;
4) Asfalty i koks naftowy;
5) Smary stałe.
W zależności od rodzaju ropy naftowej oraz produktów, jakie mają być z niej otrzymywane, stosuje się odpowiednie technologie przeróbki ropy naftowej. Ropę naftową poddaje się przeróbce w rafineriach paliwowych, paliwowo-olejowych oraz w rafineriach petrochemicznych (rafineria ropy naftowej). W rafineriach paliwowo-olejowych stosuje się tzw. zachowawczą metodę przeróbki ropy, polegającą na rozdziale ropy naftowej na frakcje, bez chemicznej zmiany jej składników; z ropy naftowej, poddanej destylacji pod ciśnieniem atmosferycznym, otrzymuje się frakcje wrzące do temp. 300–350C, a pod ciśnieniem zmniejszonym (w celu uniknięcia rozkładu składników ropy naftowej) — frakcje wrzące powyżej tej temperatury. Destylację prowadzi się w instalacjach tzw. rurowo-wieżowych (głównymi aparatami są piece rurowe i kolumny destylacyjne, zw. wieżami — stąd nazwa, oraz wymienniki ciepła, chłodnice, pompy). Odwodnioną ropę naftową poddaje się stabilizacji (oddzielenie najlżejszych, gazowych węglowodorów), ogrzewa w piecu (do temp. 350C) i wprowadza do kolumny destylacyjnej atmosf., w której następuje jej rozdzielenie na: benzynę, naftę, olej napędowy (odprowadzane po ochłodzeniu do zbiorników magazynowych) oraz mazut; mazut — po ogrzaniu — wprowadza się do kolumny destylacyjnej próżniowej, z której odbiera się destylaty olejowe i gudron. W celu uzyskania produktów handlowych otrzymane frakcje poddaje się procesom uszlachetniającym, np. benzynę — odsiarczaniu, reformingowi, frakcje olejowe — rafinacji (np. odparafinowaniu, odasfaltowaniu). W rafineriach paliwowych i petrochem. niektóre frakcje otrzymane w wyniku destylacji ropy poddaje się tzw. procesom destruktywnym. W rafineriach paliwowych prowadzi się gł. katalityczny kraking destylatów próżniowych (średnich i ciężkich) oraz koksowanie mazutu; uzyskuje się w ten sposób duże ilości wysokooktanowych benzyn silnikowych i oleju napędowego. W rafineriach nastawionych na uzyskiwanie surowców do syntez org. (etenu, propenu, butadienu, benzenu, toluenu) podstawowym procesem destruktywnym jest piroliza lekkich frakcji naftowych, prowadzi się też kraking katalityczny cięższych frakcji uzyskanych w wyniku destylacji atmosferycznej.
Podczas destylacji frakcyjnej z surowej ropy naftowej otrzymuje się następujące produkty:

Eter naftowy, zbierany do temperatury 70 ºC, o gęstości poniżej 0,7 g/ml, składa się głównie z najlżejszych węglowodorów zawierających nie więcej niż sześć atomów węgla w cząsteczce. Zastosowanie: jako benzyna apteczna albo rozpuszczalnik do ekstrakcji.


Benzyna lekka, zbierana od 60 do 100 ºC i o gęstości 0,7 - 0,75 g/ml, stosowana głównie jako benzyna lotnicza.

Benzyna ciężka, wrząca w granicach 100 - 150 ºC o gęstości 0,75 g/ml, używana jako benzyna samochodowa.

Ligroina, zwana inaczej benzyną lakową, wrze w granicach 100 - 180 ºC.

Podane powyżej granice temperatur wrzenia poszczególnych frakcji oraz ich gęstość nie charakteryzują dokładnie danego rodzaju benzyny. Zależnie od pochodzenia ropy i od przeznaczenia destylatu granice te mogą się wahać.

Nafta jest produktem destylacji ropy odbieranym w granicach temperatur wrzenia 215 - 325 ºC. Surową naftę otrzymaną z pierwszej destylacji i zawierającą sporo smolistych zanieczyszczeń poddaje się następnie rafinacji chemicznej. Oczyszczona nafta powinna być trudno zapalna, a więc nie może zawierać lotnych składników, charakterystycznych dla benzyny. Temperatura zapłonu nafty, zgodnie z przepisami, wynosi 39 ºC. A zatem nafta nie powinna zapalać się w zetknięciu ze stosunkowo zimnym płomieniem zapałki.

Oleje naftowe. Pozostałość po destylacji ropy naftowej pod zwykłym ciśnieniem, wrzącą powyżej 325 ºC, poddaje się następnie destylacji próżniowej (pod zmniejszonym ciśnieniem), otrzymując rozmaite produkty przemysłowe, a przede wszystkim różne oleje naftowe. Należą do nich oleje smarowe, oleje silnikowe (używane do silników Diesla), oleje gazowe (przerabiane za pomocą pirolizy na mieszaninę gazów, używaną do oświetlania) oraz olej parafinowy, z którego przez wymrażanie wykrystalizowuje się parafinę służącą do wyrobu świec. Z niskogatunkowych rop, nie nadających się do wytwarzania wyżej wymienionych olejów naftowych, otrzymuje się oleje opałowe (mazut) stosowane na statkach lub w przemyśle.

Parafina stała topi się w temperaturze 15 - 60 ºC. Jest prawie bezbarwnym przezroczystym lub półprzezroczystym ciałem krystalicznym. Składnikami parafiny są węglowodory o zawartości węgla C19 - C39. Parafina służy do wyrobu świec oraz jako materiał izolacyjny w elektrotechnice.

Wazelina jest również produktem destylacji niektórych gatunków ropy naftowej i stanowi pozostałość po oddestylowaniu lżejszych składników. Wazelin surowa jest żółtoczerwoną lub ciemnozieloną półstała masą, używaną jako smar, nie ulegający zmianom na powietrzu ( w odróżnieniu od tłuszczów). Przez rafinację chemiczną za pomocą stężonego kwasu siarkowego, który następnie usuwa się za pomocą wody, otrzymuje się bezbarwną wazelinę farmaceutyczną, służącą do wyrobu maści.


Smoła ropna (inaczej asfalt naftowy) jest ostateczną pozostałością po przeróbce ropy naftowej, stosuje się ją np. po pokrywania nawierzchni dróg.











Gaz ziemny jest mieszaniną węglowodorów — najlżejszych homologów metanu - oraz (w zmiennych ilościach) azotu, dwutlenku węgla, siarkowodoru, gazów szlachetnych. Występuje gł. w porowatych piaskach, piaskowcach, wapieniach i dolomitach, niekiedy także w szczelinach skał magmowych. Zazwyczaj towarzyszy złożom ropy naftowej lub węgla kamiennego, tworzy także samodzielne złoża. Powstaje w wyniku analogicznych procesów jak ropa naftowa lub stanowi jeden z produktów uwęglania substancji roślinnej. Rozróżnia się: gaz ziemny suchy, zawierający najczęściej ok. 95% metanu, 2% etanu, 3% węglowodorów wyższych i innych gazów (siarkowodór, dwutlenek węgla, azot), oraz gaz ziemny mokry, w którym występuje najczęściej ok. 80% metanu, 6,5% etanu, 6% propanu, 4% butanu, 3,5% pentanu oraz węglowodory wyższe; z mokrego gazu ziemnego wyodrębnia się węglowodory w postaci gazu płynnego oraz gazoliny. Gaz ziemny jest cennym surowcem w produkcji sadzy, gazu syntezowego oraz jest stosowany jako paliwo. Ma zastosowanie do celów opałowych, głównie w kuchenkach gzowych oraz jako ważny surowiec w przemyśle chemicznym. Wartość opałowa: 35,2 · 10662,8 · 106 J/m3 (8400–15 000 kcal/m3). W Polsce występuje gł. na Podkarpaciu, w środk. części Niz. Południowowielkopolskiej (k. Ostrowa Wielkopolskiego) i na Pomorzu Zachodnim. Gaz ziemny jest paliwem znacznie droższym od węgla, ale równocześnie o wiele czystszym ekologicznie. Budowa elektrowni gazowych trwa krócej i wymaga mniejszych nakładów niż elektrowni węglowych. Sprawność elektrowni gazowo-parowych jest prawie o 20% wyższa i wobec tego mniejsze jest zużycie wody niezbędnej do chłodzenia. W porównaniu z elektrownią węglową emisja szkodliwych substancji przez elektrownię gazową, przy wytwarzaniu tej samej ilości energii elektrycznej, jest mniejsza. Oparcie rozwoju polskiej elektroenergetyki na gazie ziemnym wymagałoby kilkakrotnego zwiększenia jego importu.

Przydatna praca?
W słowniku:
Przydatna praca? tak nie 83
głosów
Poleć znajomym

Serwis Sciaga.pl nie odpowiada za treści umieszczanych tekstów, grafik oraz komentarzy pochodzących od użytkowników serwisu.

Zgłoś naruszenie