Przydatność 35%

Budowa i zastosowanie mikroskopu

Autor:










Budowa i zastosowanie mikroskopu
Mikroskop (gr. μικρός mikros - "mały" i σκοπέω skopeo - "patrzę, obserwuję") – urządzenie służące do obserwacji małych obiektów, zwykle niewidocznych gołym okiem. Mikroskop pozwala spojrzeć w głąb mikroświata.
Pierwsze mikroskopy były mikroskopami optycznymi, w których do oświetlania obserwowanych obiektów wykorzystywano światło dzienne. Za twórcę tego rodzaju mikroskopów uważa się Holendrów – braci Hansa i Zachariasza Janssennów. Pierwsze konstrukcje wykonali oni około roku 1590. Ze względu na słabe powiększenie (10 razy) mikroskopy nie zdobyły wtedy uznania jako narzędzie badawcze.
Przełomu dokonał wynalazca i przedsiębiorca Antonie van Leeuwenhoek, który udoskonalił konstrukcję mikroskopu, a następnie rozwinął produkcję tych urządzeń w XVII wieku. Leeuwenhoek jako pierwszy obserwował żywe komórki – plemniki, pierwotniaki, erytrocyty itp. Wykorzystanie mikroskopu przyczyniło się do ogromnego postępu w biologii. Naukowcy mogli badać, co dzieje się we wnętrzu żywych organizmów. Powstały nowe dziedziny nauki, cytologia oraz mikrobiologia. Dzięki wykorzystaniu mikroskopu możliwy był ogromny postęp w leczeniu chorób zakaźnych. W roku 1882 Robert Koch odkrył z pomocą mikroskopu bakterie gruźlicy.
Mikroskop wykorzystano do obserwacji podziału chromosomów w jądrze komórkowym. W roku 1910 Thomas Hunt Morgan udowodnił, że chromosomy są nośnikami genów dając początek genetyce. W technologii materiałowej mikroskopy wykorzystywano do obserwacji struktur metali oraz innych materiałów. W ten sposób możliwe stało się opracowanie doskonalszych stopów metali wykorzystywanych w przemyśle.
Kolejnym przełomem stało się wykorzystanie w mikroskopie elektronów. W roku 1931 pierwszy mikroskop elektronowy skonstruowali Ernst Ruska i Maksem Knollem w Berlinie. Możliwa stała się obserwacja najmniejszych struktur organelli komórkowych. W technologii wykorzystanie mikroskopów elektronowych stało się podstawą rewolucji krzemowej. Bez technik sprawdzania jakości wykonywanych w półprzewodnikach struktur nie udałoby się dokonać tak ogromnego postępu w tej dziedzinie.
W roku 1982 mikroskopia uczyniła pierwszy krok w kierunku świata atomów. Pracujący w Zurychu naukowcy Gerd Binnig oraz Heinrich Rohrer skonstruowali mikroskop STM. Pozwolił on na obserwację struktur złożonych z pojedynczych atomów. Późniejsze prace doprowadziły do budowy szeregu odmian tego mikroskopu pozwalających na badanie różnych właściwości materii w skali nanometra. Niezwykłą cechą mikroskopu STM była jego zdolność nie tylko do obserwacji atomów, ale również manipulacji nimi – przekładania ich z miejsce na miejsce po jednym. Obecnie badacze przewidują, że postęp w mikroskopii pozwoli na zapoczątkowanie rozwoju nanotechnologii, która może znaleźć zastosowanie w prawie każdej dziedzinie życia.
W konstrukcji mikroskopu są połączone dwa układy: optyczny i mechaniczny. Układ optyczny składa się z dwóch splecionych ze sobą części oświetleniowej i powiększającej. Jeden służy do optymalnego oświetlenie obserwowanego obiektu. Drugi do dwustopniowego powiększenia jego obrazu. Układ mechaniczny ma zapewniać właściwe położenie poszczególnych elementów układu optycznego. W konstrukcji mikroskopu kluczowa jest stabilność i precyzja układu mechanicznego oraz wzajemna równoległość i współśrodkowość składowych układu optycznego. W lepszych mikroskopach badawczych znadują się wszelkie regulacje temu służące oraz możliwość rozbudowy o elementy realizujące różne sposoby oświetlenia, obserwacji, rejestracji obrazu. W uproszczonych "studenckich" mikroskopach lub przeznaczonych do rutynowych badań laboratoryjnych, rezygnuje się z niektórych elementów celem uzyskania tańszych w produkcji rozwiązań.
Na poniższej fotografii zaznaczono podstawowe elementy z jakich zbudowany jest nieuproszczony mikroskop. Jest to mikroskop badawczy Biolar produkowany niegdyś przez Polskie Zakłady Optyczne.


Elementy mechaniczne
• Statyw, korpus mikroskopu: zapewnia sztywność całej konstrukcji, generalnie im sztywniejszy i cięższy mikroskop tym lepiej.
Konstrukcja statywu determinuje, czy dla regulacji odległości obiektyw-przedmiot (tj. nastawiania na ostrość, ogniskowania) przesuwamy w pionie stolik przedmiotowy względem nieruchomego obiektywu, czy też wykonujemy te ruchy tubusem (wraz z mocowanymi do niego obiektywami, okularami i innymi akcesoriami) podczas gdy stolik jest sztywno związany z korpusem.
Rozwiązanie pierwsze (podnoszony-opuszczany stolik) jest stosowane w nowszych mikroskopach. Jest lepsze bo zapewnia stałą wysokość okularów - co jest istotne z ergonomicznego punktu wiedzenia. Ważne jest też to, że stolik jako element ruchomy jest lżejszy od części tubusowej i okularowej. Problemem bywa bowiem zjawisko samoistnego opadania, "płynięcia" stolika lub tubus pod własnym ciężarem. Kompensacja ciężaru wymaga odpowiedniego dobrania oporu stawianego przez śrubę ruchu pionowego i gdy zostanie przekroczony zakres regulacji pojawia się tendencja do "płynięcia". To może wręcz uniemożliwić stosowanie ciężkich nasadek fotograficznych lub innych urządzeń umieszczanych na tubusie. Takiej wady nie ma nowoczesna konstrukcja z podnoszonym stolikiem przedmiotowym, którego ciężar jest z reguły nieduży,
• Stolik przedmiotowy: służy do umocowania preparatu i jego przesuwu w poziomie w osiach X, Y, w zależności od rozwiązania konstrukcyjnego (patrz uwagi przy statywie mikroskopu) przez jego ruch w pionie reguluje się odległość obiektyw-przedmiot (tj. nastawia się ostrość). Mogę też być stoliki specjalnego przeznaczenia np. obrotowy, z precyzyjną podziałką, do pracy w świetle spolaryzowanym. W wyżej wspomnianym mikroskopie stolik jest wymienny i obracany w pewnym zakresie - blokowany jest w przez docisk nieopisanej na powyższym zdjęciu "wajhy" widocznej nieco ponad kondensorem. Poprzez zwolnienie blokady i wyjęcie stolika można go umieścić w położeniu takim aby śrubę posuwu poziomego preparatu (są to dwa, współoosiowe pokrętła) znadowała się pod prawą lub lewą ręką.
• Śruba ogniskowania makro- i mikrometyczna: śruby służące do ustawiania odległości przedmiot-obiektyw (nastawiania ostrości, ogniskowania).
W zależności od konstrukcji śruba podnosi-opuszcza stolik przedmiotowy lub tubus z obiektywami. Śruba ruchu drobnego - mikrometryczna, zaopatrzona jest zwykle w poddziałkę mikrometyczną. Może ona wtedy służyć do pomiaru grubości (wysokości) obiektu. Wartości mierzone tą techniką nie odpowiadają wprost odczytowi z podziałki śruby. Opis techniki pomiaru grubości mikroskopem,
Parfokalność. Odległość parfokalna mierzona jest od płaszczyzny oporowej obiektywu do jego ogniska przedmiotowego. Zgrubnie można ją ocenić patrząc na długość obiektywów o wysokim powiększeniu (mają bardzo małą odległość roboczą - tj. od przedniej soczewki do szkiełka przykrywkowego) stąd ich długość jest tylko nieznacznie mniejsza od odległości parfokalnej. W mikroskopach produkowanych od lat 60 XX wieku wynosi ona zwykle 45mm. W starszych rozwiązaniach bywa często mniejsza. Mieszanie w jednym mikroskopie obiektywów o różnej odległości parfokalnej jest bardzo niewygodne ponieważ zmusza przy zmianie obiektywu do żmudnego ogniskowania preparatu "od zera". W szczególności różnica odległości parfokalnej może uniemożliwić zamienność obiektywów. Np. w mikroskopie PZO Biolar nie ma możliwości uniesienia na tyle wysoko stolika przedmiotowego aby móc zastosować obiektywy o krótkiej odległości parfokalnej ze "starych Zeissów.
W normalnej sytuacji mamy w rewolwerze mikroskopu zestaw obiektywów o tej samej odległości parfokalnej. Jest to korzystna sytuacji, bo oznacza, że po nastawieniu ostrości jednym obiektywem i następnie po zmianie na obiektyw o innym powiększeniu, obraz jest nadal ostro widoczny. Ewentualnie wymagana jest nieduża korekta ostrości przez obrót śruby ogniskowania mikro
W bardzo dawnych konstrukcja może się zdarzyć, że poszczególne obiektywy w zestawie mają różne odległości parfokalne, co jak wcześniej wyjaśniono jest bardzo kłopotliwe w eksploatacji.
• Rewolwer: obiektywy mikroskopu są osadzone w gniazdach obrotowej tarczy - rewolweru, jego obracanie umożliwia prostą zmianę obiektywu a tym samym używanego powiększenia,
• Tubus: przestrzeń pomiędzy obiektywem a okularem, w której następuje formowanie się obrazu; długość tubusu (tzw. długość optyczna tubusu - bo mechaniczna może być inna) w starszych konstrukcjach jest ustandaryzowana na 160mm (Zaiss i wielu innych) lub 170mm (Laica, czeskie mikroskopy). Jest to istotne zwłaszcza z tego względu, że obiektywy są projektowane na określoną długość tubusu. Jedynie dla niej mają skorygowane istotne aberacje. Wielkość ta, podana w milimetrach, jest wygrawerowana na obiektywach).
W mikroskopach zaprojektowanych pod koniec XX w. stosuje się przeważnie tzw. optykę korygowaną na nieskończoną i odpowiednie do tego obiektywy z wygrawerowanym symbolem nieskończoności. Przy czym o ile wymienność obiektywów projektowanych dla tubusa 160mm różnych marek była niemal zawsze możliwa, także dzięki wspólnemu standardowi gwintu (RMS), to obecnie, z uwagi na walkę konkurencyjną systemy poszczególnych głównych producentów mikroskopów nie są wzajemnie kompatybilne.
• Układ oświetleniowy. Oświetlenie jest krytycznym dla jakości obrazu elementem mikroskopowania i znajdziesz na zbiorczej kilka artykułów poświęconych temu tematowi, W dawnych konstrukcjach stosowano zwykle rozwiązanie z lusterkiem, z którym można było użyć zewnętrzny oświetlacz (lampę mikroskopową). Obecnie regułą jest oświetlacz zintegrowany (wbudowany) w korpus mikroskopu. W oświetleniu tkwi zwykle zasadnicza różnica pomiędzy pełnymi mikroskopami badawczymi, a uproszczonymi, tanimi mikroskopami studenckimi (np. PZO Studar) lub do rutynowych badań laboratoryjnych. Uproszczenie polega zwykle na rezygnacji z przysłony polowej, mozliwości centrowania i ustawiania odległości żarówki od kolektora, centrowania kondensora.
• układ mechaniczny kondensora: pozwala na regulacje położenia kondensora w pionie (ogniskowanie przysłony polowej w płaszczyźnie przedmiotowej w oświetleniu wg. Koehlara). W bardziej zaawansowanych modelach możliwe jest też centrowanie kondensora względem osi optycznej mikroskopu. Wspomniany PZO Biolar posiadają regulowaną mechniczną blokadę (śrubę dystansową) zabezpieczający przed zbyt wysokim uniesieniem kondensora i "wjechaniem" w szkiełko przedmiotowe,
Elementy optyczne to :
• Oświetlacz: w prostych mikroskopach będzie to lusterko, może też być wbudowana żarówka z reflektorem, lub pełnowymiarowy układ oświetlający z kolektorem, regulacją odległości, centrowaniem, osobnym zasilaniem niskowoltowym, z regulacją napięcia itd.
• Kondensor: koncentruje światło formując z niego stożek wystarczający do oświetlenia pola przedmiotowego i wypełnienia apertury używanego w danej chwili obiektywu. Przy oświetleniu ustawionym wg. Koehlara przysłona kondensora staje się przysłoną aperturową obiektywu i jest jednocześnie wtórym źródłem oświetlenia,
• Obserwowany obiekt umieszczany jest na szkiełko przedmiotowym (podstawowym). Na nim w kropli płynu (medium) umieszczony jest oglądany przedmiot, przykryty szkiełkiem nakrywkowym, Rozmiar szkiełka przedmiotowego jest ustandaryzowany na 76 x 26 mm, jego grubość to ok. 1 mm. Dawniej produkowane bywały grubsze. Bardzo ważna jest czystość szkiełek. Obecnie produkowane szkiełka renomowanych firm są reklamowane jako "gotowe do użycia" i zwykle jest to niemal prawdą. Dobrze jest jednak przynajmniej mieć gruszkę gumową pod ręką dla zdmuchnięcia nieprzylegającego kurzu. Grubość szkiełka przykrywkowego powinna zwykle wynosić ok. 0.15 mm - kwestia ta jest bardzo istotna dla obiektywów o powiększeniu ponad x10.
• Imersja polega na wypełnienie cieczą przestrzeni pomiędzy szkiełkami a obiektywem i/lub pomiędzy kondensorem a szkiełkiem przedmiotowym, tak aby współczynnik załamania ośrodków na drodze światła od kondensora do obiektywu był możliwie równy (lub zgodny z obliczeniami przyjętymi przy projektowaniu obiektywu imersyjnego). W przypadku obiektywów suchych we wspomnianych przestrzeniach, na drodze światła znajduje się powietrze.
• Obiektywy. Jest pierwszym, zasadniczym elementem powiększającym obraz. Zbierają światło wychodzące z przedmiotu i tworzy jego powiększony obraz pośredni, oglądany przez okular(y) mikroskopu,
• Tubus: tutaj, w tylnej płaszczyźnie ogniskowej obiektywu formuje się powiększony obraz pośredni. W tubusie, w gniazdach okularowych umieszcza się okulary mikroskopowe.
• Nasadka okularowa: dłuży do osadzenia okularów i zmiany biegu promieni świetlnych na bardziej ergonomiczy dla obserwatora - pochylony. Nasadki okularowe mogą być jednookularowe (w prostszych i starszych mikroskopach) lub dwuokularowe (binokularna) pozwalające na wygodną obserwację dwoma oczami - ważne nie tylko ze względu na ergonomię ale i dla zdrowia.W przypadku nasadek binokularnych może być dostępna regulacja rozstawu okularów (stosownie do odległości pomiędzy źrenicami obserwatora) oraz regulacja dioptrija (dostępna w jednym z okularów) dla wyrównania różnić pomiędzy oczami obserwatora. Tzw. nasadki triokularowe mają trzecie wyjście okularowe (lub łącznikowe) do podłączenia aparatu fotograficznego, kamery cyfrowej.
• Okulary: służą do powiększenia (i obserwacji ocznej) obrazu tworzonego przez obiektyw mikroskopu, dodatkowo mogą korygować wady obrazu z obiektywu, Okulary pomiarowe umożliwiają (po wyskalowaniu) wykonywanie pomiarów długości i szerokości obserwowanych obiektów.
• Mikroskop stereoskopowy - mikroskop z nasadką binokularną to nie to samo co mikroskop stereoskopowy. W mikroskopii stereoskopowej obraz dochodzący do każdego z oczu różni się, obserwator ma wrażenie postrzegania głębi obrazu, w mikroskopie binokularnym obraz dostarczany dla każdego oka jest ten sam, nie daje przestrzennego wrażenia. Mikroskopy stereoskopowe, są bardzo przydatne w mykologii, zwłaszcza przy precyzyjnym wykonywaniu preparatów lub przy badaniu grzybów tworzących bardzo małe owocniki. Z reguły mikroskopy te charakteryzują się dużą odległością roboczą obiektywu (standard to 100 mm) i stosunkowo niewielkimi powiększeniami, rzadko przekraczającymi 100x,

Przydatna praca?
Przydatna praca? tak nie 102
głosów
Poleć znajomym

Serwis Sciaga.pl nie odpowiada za treści umieszczanych tekstów, grafik oraz komentarzy pochodzących od użytkowników serwisu.

Zgłoś naruszenie
JAK DOBRZE ZNASZ JĘZYK ANGIELSKI? x ads

Otrzymałaś kupon na darmowe lekcje angielskiego.

3 MIESIĄCE NAUKI MOŻESZ MIEĆ GRATIS.
Odbierz kupon rabatowy