profil

Energie odnawialne

poleca 87% 103 głosów

Treść
Grafika
Filmy
Komentarze

Słońce jest jedną z miliarda gwiazd, jest źródłem energii wszystkich znanych istot żyjących na Ziemi. Energia słoneczna docierająca na Ziemię w ciągu 40 minut pokryłaby zapotrzebowanie całoroczne człowieka. Paliwa naturalne, takie jak węgiel i ropa naftowa, eksploatowane nadal w takim samym tempie jak obecnie wyczerpią się w przyszłym stuleciu. Elektrownie jądrowe, które wydawały się być dobrą alternatywą są dość ryzykowne, jak pokazała katastrofa w Czarnobylu (Ukraina) w 1986r. Ze wszystkich źródeł energii, energia słoneczna jest najbezpieczniejsza. Promienie słoneczne, to największe źródło energii na Ziemi, około 10000 razy większe, niż obecne zużycie energii. Aktualnie bardzo mała ilość tego źródła jest wykorzystywana w sposób bezpośredni. Główną częścią energii wykorzystanej przez człowieka jest min, węgiel, olej, naturalny gaz, co nie jest niczym innym, jak formą skumulowanej energii słonecznej. W ciągu ostatnich 100 lat zużyliśmy więcej energii niż wszystkie generacje przed nami. Skutki tego już odczuwamy! Zmiany klimatu mogą być jeszcze bardziej dotkliwie dla naszych dzieci i wnuków. Można temu zaradzić! Wykorzystujmy promieniowanie słoneczne. Energia słoneczna jest czysta ekologiczna a przede wszystkim za darmo.Promieniowanie słoneczneW ciągu 2 tygodni na ziemię dociera tyle energii w postaci promieni słonecznych ile wykorzystują wszyscy ludzie na ziemi w ciągu roku. Niestety nie możliwe jest pokrycie całej ziemi kolektorami słonecznymi. Około 30% promieniowania słonecznego dochodzącego do naszej planety jest odbijane przez atmosferę, 20% jest przez nią pochłaniane, a tylko 50% energii dociera do powierzchni ziemi. Wiele pożarów w gorących regionach Ziemi jest wywołanych przez ogniskowanie promieni słonecznych w porannej rosie. Pierwsze instalacje solarne były wykonywane już 6500 lat temu. Pierwsze rozwiązania były stosowane przez Majów do ogrzewania pól uprawnych. 400 Lat p.n.e. Grecy wykorzystywali promienie słoneczne, skupione w szklanej kuli wypełnionej wodą, do rozniecania ognia. Chińczycy, 200 lat p.n.e., Wykorzystywali zakrzywione zwierciadła do skupiania promieni słonecznych. W nowoczesnych kuchenkach słonecznych skupiane promienie służą do podgrzewania żywności. Zakrzywiony koncentrator ogniskuje promienie słoneczne na produktach. Niektóre kuchenki, zamiast zakrzywionego zwierciadła, wykorzystują płaskie reflektory, ustawione pod odpowiednim kątem. Podobna technika jest stosowana w piecach przemysłowych. W Mont Louis, we Francji wielopiętrowa konstrukcja małych reflektorów, odpowiednio ustawionych, tworzy gigantyczne, zakrzywione zwierciadło. W punkcie skupienia uzyskuje się temperaturę do 3000C - właściwą do obróbki wielu metali. W ogniskowej lustra umieszczono piec hutniczy. W Kalifornii na pustyni Mojave, 200 km na północny wschód od Los Angeles, w latach 1984-1992 powstał kompleks 13 elektrowni heliotermicznych o różnej mocy. Również w Kalifornii w 1984 r. uruchomiono elektrownię Carissa Plain wytwarzającą energię elektryczną metodą helioelektryczną. Metoda ta polega na bezpośredniej przemianie energii promieniowania słonecznego w energię elektryczną za pomocą ogniw fotoelektrycznych. Ogniwa takie przemieniają w energię elektryczną nie tylko bezpośrednie promieniowanie Słońca, lecz także promieniowanie rozproszone, przy zachmurzeniu. Elektrownia helioelektryczna o mocy 300 kW pracuje także od 1983 r. na niemieckiej wyspie Pellworm leżącej na Morzu Północnym. Aktualnie w Europie największa elektrownia słoneczna pracuje we Włoszech, wytwarzając prąd o mocy 3,3 MW. Grecja ma zamiar wybudować do 2003 r. największą na świecie elektrownię słoneczną. Będzie ona wytwarzała prąd o mocy 50 MW, co zapewni energię elektryczną dla 100 tys. Mieszkańców.Elektrownie słoneczne odznaczają się wysokimi kosztami eksploatacyjnymi, co powoduje, że większe nadzieje wiąże się z wykorzystaniem energii słonecznej w małych instalacjach, do produkcji ciepłej wody.W związku z tym chciałbym przedstawić kilka przykładów bezpośredniego zastosowania energii słonecznej w energię elektryczną np. -Baterie słoneczne – połączone szeregowo ogniwa słoneczneBaterie słoneczne są to urządzenia elektroniczne, które wykorzystują zjawisko fotowoltaniczne do zamiany światła na prąd elektryczny(przetwarzają światło na energię elektryczną). Każde małe ogniwo wytwarza mały prąd. Ale duża liczba ogniw, wzajemnie połączonych jest w stanie wytworzyć prąd o użytecznej mocy. Ogniwa są zbudowane z cienkich warstw półprzewodników. Zwykle z krzemu. Czasem wykorzystuje się arszenik galu, ponieważ powala na pracę ogniw w wysokich temperaturach. Jest to istotne w zastosowaniach w przestrzeni kosmicznej, gdzie promieniowanie słoneczne jest dużo silniejsze.Pośród ogniw możemy wyróżnić min. się o ogniwa pojedyncze(monokrystalicznych), wielokrystaliczne(polikrystaliczne) albo cienkowarstwowe (amorficzne). Różnica między ogniwem mono- i polikrystalicznym nie jest zbyt duża, właściwie chodzi o różny sposób produkcji materiału bazowego ogniwa. Dzięki jednolitemu materiałowi ogniwo monokrystaliczne ma nieco wyższą sprawność, tzn., że wytwarza nieco więcej energii na jednostkę powierzchni, niż ogniwo polikrystaliczne. Różnica jest jednak niewielka, 12-15% dla monokrystalicznego i 10-14 % dla polikrystalicznego. Zwykłe ogniwo słoneczne z krystalicznego krzemu o wymiarach ok. 10 x 10 cm ma nominalne napięcie ok. 0,5 V. Istnieją baterie z różną ilością ogniw, w zależności od zastosowania, jak i od jakości ogniw. Bateria słoneczna, która będzie używana do ładowania baterii ołowiowych na naszej długości i szerokości geograficznej, potrzebuje, co najmniej 30 ogniw, jeśli chodzi o monokrystaliczne, i 32 ogniwa, jeżeli chodzi o ogniwa polikrystaliczne. Przy wzrastającej temperaturze napięcie ogniwa spada, co oznacza, że może być potrzebna bateria z jeszcze większą ilością ogniw ( o ile jest bardzo gorąco w miejscu, gdzie będzie ona zainstalowana). Zwykła bateria składająca się z 30-32 ogniw ma maksymalną moc rzędu 40-45 W. Inne wielkości można otrzymać poprzez albo dołożenie większej ilości ogniw, albo poprzez podział ogniwa na mniejsze części. Jest to jednak dość drogie, ponieważ wymaga dodatkowych zabiegów w procesie produkcji. Bateria cienkowarstwowa produkowana jest w ten sposób, że nakłada się cienką warstwę aktywnego materiału na specjalnie przygotowaną szybę ze szkła. Baterie słoneczne powinny być montowane w ten sposób, aby były maksymalnie wyeksponowane do światła. Moc wyjściowa jest wprost proporcjonalna do ilości energii odbieranej z baterii. Kierunek ustawienia powinno się wybierać pomiędzy południowym wschodem i południowym zachodem, a miejsce powinno być nie ocienione. Panele krystaliczne są szczególnie wrażliwe na zaciemnienie i nawet, jeżeli jedno ogniwo w baterii jest zacienione traci się dużą część energii. Półcień nie jest tak niebezpieczny, jak całkowite zacienienie. Kąt ustawienia w kierunku słońca ma również znaczenie; w czasie półrocza zimowego jest ważne, aby panel był ustawiony pod kątem prostym do promieni słonecznych, podczas gdy w letniej porze roku wystarczy kąt 30-45 stopni. Bateria słoneczna produkuje energię również wówczas, gdy słońce jest za chmurami, lecz oczywiście energia, która jest produkowana jest zależna od natężenia promieniowania świetlnego. W słoneczny, letni dzień napromieniowanie wynosi aż do 1000 W/m2 i w tym czasie można ładować akumulator maksymalnie prądem 3 A, o ile oczywiście jest on już w pełni naładowany. W pochmurny, letni dzień napromieniowanie może wynieść tylko ok. 200 W/m2 i wówczas prąd nie będzie większy niż ok. 0,5 A.Baterii używa się również w małych kalkulatorach i zegarkach. W 1981 r. słoneczny samolot Solar Challengerer przeleciał nad kanałem La Manche wykorzystując jako źródło zasilania tylko energię słoneczna. Skrzydła tego samolotu pokryte były bateriami słonecznymi, które zasilały silnik elektryczny. Pojazd przypominający samochód, który był zasilany z baterii słonecznych osiągnął prędkość maksymalną 67 km/h w 1987 r podczas wyścigów tego typu pojazdów, na dystansie 3138 km. Na Florydzie, w Stanach Zjednoczonych publiczne automaty telefoniczne są zasilane przez baterie słoneczne montowane na chroniącym je dachu. - Ogrzewanie domówWszystkie domy są ogrzewane przez słońce, ale tylko niektóre są skonstruowane w taki sposób, aby uzyskać jak najwięcej energii cieplnej. Umożliwia to znaczną redukcję zapotrzebowania energii. W takich domach duże okna projektuje się od strony najbardziej nasłonecznionej, a małe od przeciwnej. W niektórych rozwiązaniach stosuje się zasłony izolujące ciepło, które zamykane na noc nie Pozwalają na ucieczkę ciepła nagromadzonego w dzień. Takie rozwiązanie jest tzw. systemem pasywnym. Inne zastosowanie energii słonecznej w domu polega na podgrzewaniu wody. Promienie słoneczne podgrzewają wodę, która przepływa przez płaskie panele tworzące kolektory absorbujące ciepło. Kolektory słoneczne wykonane są z wysokiej jakości materiałów jak: miedź, aluminium, specjalne szkło solarne i izolacja cieplna,. Te panele umieszcza się zazwyczaj na dachu domu, pod kątem zapewniającym największy pobór ciepła słonecznego. Zimna woda jest pompowana do paneli i tam podgrzewana przez ciepło absorbowane z promieni słonecznych. Umożliwiają one ogrzanie wody do 40C, co przy ogrzewaniu podłogowym wystarcza do ogrzania całego domu. Większe kolektory słoneczne, podgrzewające wodę do temperatury 65C. Wykorzystywane są w rolnictwie, do ogrzewania basenów kąpielowych oraz do wytwarzania ciepłej wody tam, gdzie nie ma systemów ciepłowniczychOgólnie są znane dwa rodzaje kolektorów: płaskie oraz skupiające.Płaskie kolektory słoneczne są idealnym rozwiązaniem dla, warunków klimatu polskiego. Wynika to m.in. z faktu, iż promieniowanie słoneczne docierające na powierzchnię ziemi dzieli się na promieniowanie bezpośrednie i tzw. rozproszone. Udział promieniowania rozproszonego w całkowitym można szacować na poziomie 50% w skali roku. Nie wszystkie rodzaje kolektorów słonecznych mogą pracować przy promieniowaniu rozproszonym. Cechą płaskich kolektorów słonecznych jest fakt, iż pracują one nawet w warunkach promieniowania rozproszonego. W optymalnych warunkach pogodowych przy bezchmurnym niebie gęstość promieniowania wynosi około 1000 W/m2, w innych warunkach gęstość promieniowania słonecznego padającego na powierzchnię ziemi kształtuje się następującoKolektory skupiające pracują tylko przy promieniowaniu bezpośrednim. W czasie, gdy występuje promieniowanie rozproszone, kolektory te nie pracują. Z uwagi na własności kolektorów, w których wydziela się energia cieplna wskutek pochłaniania energii promieniowania słonecznego, praktycznie nie można wyłączyć kolektorów (poza ich przykryciem np. materiałem). Jeżeli promieniowanie słoneczne padające na kolektor jest intensywne i nie ma odbioru energii cieplnej (np. wskutek zaniku energii elektrycznej), stosunkowo gwałtownie wzrasta temperatura i ciśnienie w układzie. Prowadzi to z reguły do otwarcia zaworu bezpieczeństwa.Istnieją również kolektory słoneczne z próżniowymi rurami szklanymi, w których znajduje się rura połączona z absorberem. Należy zaliczyć je do grupy kolektorów płaskich. Wewnątrz rury jest ciecz, która w cyklu parowanie-kondensacja przekazuje energię cieplną wytworzoną w absorberze do strefy skraplania, gdzie następuje odbiór ciepła do wody ogrzewanej. Rosnące ceny energii i świadomość konieczności działania na rzecz ochrony środowiska naturalnego, powodują coraz większe zainteresowanie wykorzystaniem energii słonecznej. Kolektory słoneczne mogą w ciągu roku zaoszczędzić średnio nawet do 75% energii potrzebnej do przygotowania ciepłej wody użytkowej oraz do 40% ciepła zużywanego na ogrzewanie. Zaoszczędzanie każdej kilowatogodziny energii cieplnej pozwala zmniejszyć emisję tlenków węgla od 0,56 do 1,1 kg a także w zależności od jakości paliwa również odpowiednie ilości tlenków siarki i azotu. - Można wykorzystać energie słoneczną do innych celów takich jak;Do ładowania akumulatorów, co umożliwia korzystanie z energii elektrycznej również w nocy. Raz zamontowane nic wymagają konserwacji przez wiele lat. W Wielkiej Brytanii niektóre niezamieszkane domy są zasilane energią słoneczną. Także stacje meteorologiczne korzystają z baterii słonecznych. Ilość energii pochodząca z baterii słonecznej nie zależy od temperatury otoczenia, a od nasłonecznienia. Dlatego też jest możliwe, aby latarnia o mocy 320 kW na lądowisku samolotów pracowała na zamarzniętej Alasce.Najnowsza technologia ogniw fotowoltanicznych ma być zastosowana w stacji kosmicznej Freedom konstruowanej w Stanach Zjednoczonych. Ma być ona wyposażona w osiem skrzydeł, fotowoltanicznych, które umożliwili wytworzenie energii elektrycznej o mocy 75 kW. Możliwe, że w następnym stuleciu, będziemy korzystać z energii dostarczanej z przestrzeni kosmicznej. Ten projekt zakłada wystrzelenie na orbitę około ziemską zestawu 40 satelitarnych elektrowni słonecznych (SPS - Solar Power Satelites) wyposażonych w olbrzymie panele baterii słonecznych. Wytworzona elektryczność ma być zamieniana na promieniowanie mikrofalowe, transmitowane do odbiorników na Ziemi, gdzie nastąpi znowu zamiana mikrofal w prąd elektryczny. Zdaniem Europejskiej Agencji Przestrzeni Kosmicznej 40 SPS-ów zaspokoi jedna czwarta zapotrzebowania na energię elektryczna Zjednoczonej Europy do 2040 roku. Niestety mikrofalowe wiązki energii z satelitarnych elektrowni słonecznych spaliłyby wszystkie napotkane na drodze niemetalowe przedmioty oraz żywe istoty. Wielu naukowców uważa jednak, że w niedalekiej przyszłości będziemy korzystać z energii wytworzonej w przestrzeni okołoziemskiej. Może w następnym stuleciu satelitarne elektrownie słoneczne (SPS) rozwiążą problem pokrycia zapotrzebowania na energię..W Szwajcarii opracowano również nowy sposób spożytkowania energii słonecznej. Na szosie w pobliżu Interlaken oddano do użytku instalację, która “zbiera” latem ciepło z rozgrzanej promieniowaniem słonecznym szosy, natomiast zimą oddaje je i podgrzewa jezdnię, przeciwdziałając jej oblodzeniu. Zasada działania instalacji jest następująca: pod jezdnią umieszczono wielkie wężownicę, przez które przepływa mieszanina wody i glikolu. Podgrzana ciecz kierowana jest do wnętrza góry, gdzie następuje oddawanie ciepła skałom za pośrednictwem 91 sond wykonanych z polietylenu. Latem, gdy temperatura asfaltu często przekracza 60C, skały wewnątrz góry podgrzewają się do ok. 20C. Cała góra może akumulować 200 tys. kWh energii cieplnej, którą zimą stopniowo się wykorzystuje. W Polsce nasłonecznienie trwa 1600 godzin w skali roku. Na budowę helioelektrowni i elektrociepłowni nie mamy wiec odpowiednich warunków. Powstały już pierwsze, należące do właścicieli prywatnych, obiekty, w których energia słoneczna wykorzystywana jest do podgrzewania wody w basenach kąpielowych i ogrzewania budynków w okresie przejściowym.
KOLEKTORY SŁONECZNE
Budowa kolektora
Kolektor słoneczny jest urządzeniem wysokowydajnym stosowanym w celu przetworzenia energii słonecznej na niskopotencjalne ciepło, czyli na energię, która może być wprost wykorzystywana przez człowieka. Urządzenia te, najczęściej są stosowane do podgrzewania wody użytkowej. Wypromieniowana energia słoneczna przenika przez specjalne, dobrze przepuszczalne szkło i jest pochłaniana przez wysokowydajną warstwę rozdzielczą na podkładzie aluminiowym. Z powierzchni absorpcyjnej kolektora przechodzi ciepło do rury miedzianej lub aluminiowej zgiętej w kształcie litery „S”, a z niej dalej, do cieczy przenoszącej ciepło. Ciecz jest transportowana rurami zbiorczymi do wyjścia z kolektora. Wszystkie części funkcyjne kolektora są umiejscowione między zabezpieczającym hartowanym szkłem przykrywającym i wanną aluminiową wypełnioną dobrze izolującym materiałem.
Energia morza.

Aktualnie wykorzystuje się energię pływów morskich, fal morskich oraz energię cieplną mórz. Przewiduje się wykorzystanie energii prądów morskich. Największa na świecie elektrownia pływowa, uruchomiona w 1967 r., pracuje we Francji przy ujściu rzeki La Rance do Kanału La Manche (k. Saint-Malo). Ma ona 24 turbiny wodne o mocy po 10 MW, a więc jej moc wynosi 240 MW. Elektrownie wykorzystujące pływy morskie pracują także w Kanadzie, Chinach i Rosji. Projektowane są w Wielkiej Brytanii, Korei Południowej i w Indiach. Elektrownie wykorzystujące energię fal morskich, napędzających turbiny wodne, pracują np. na norweskiej wyspie Toftestallen k. Bergen, dając moc 350 kW, oraz na wyspie Islay u wybrzeży Szwecji. Energię uzyskuje się też przez wykorzystanie różnicy temperatury wody oceanicznej na powierzchni i w głębi oceanu. Najlepsze warunki do tego celu istnieją na oceanicznych obszarach równikowych, gdzie temperatura wody na powierzchni wynosi ok. 30C, a na głębokości 300-500 m - ok. 7C. Wykorzystanie tej różnicy temperatury odbywa się przy zastosowaniu amoniaku, freonu lub propanu, który paruje w temperaturze wody powierzchniowej i jest skraplany za pomocą wody czerpanej z głębokości 300-500 m. Cała instalacja, wraz z generatorem, znajduje się na pływającej platformie i nosi nazwę elektrowni maretermicznej. Energia elektryczna jest przesyłana na ląd kablem podmorskim. Prąd wytwarzany w takich elektrowniach wykorzystywany jest na wyspie Bali w Indonezji (5 MW), w Japonii (10 MW), na Tahiti (5 MW) i na Hawajach (40 MW) (Kucowski i inni, 1994).
Energia wiatru.

Energia była, jest i będzie potrzebna ludziom w ich życiu. Jej postać, forma czy wykorzystanie może być różne, ale przede wszystkim potrzebujemy jej przy produkcji przemysłowej, transporcie, ogrzewaniu czy oświetleniu. Początkowo tej energii dostarczało nam środowisko w postaci zasobów naturalnych nieprzetworzonych opału i paliw np. drewna, węgla, ropy naftowej czy gazu. Również dawniej przetwarzano energię w wiatrakach czy młynach wodnych. Jednak ciągły wzrost zapotrzebowania na energię i to w różnych postaciach, kurczenie się zasobów kopalnianych, względy ekologiczne i ekonomiczne stawiają przed ludźmi nowe zadania i wyzwania w tej dziedzinie. Rozwój techniki w drugiej połowie XIX wieku i powstanie ogromnej ilości urządzeń elektrycznych. Wymusił rozwój elektrowni, których zadaniem jest dostarczać prąd elektryczny do poszczególnych odbiorców. Elektrownie mogą pobierać energię potrzebną do wytworzenia prądu z różnych źródeł. Źródła energii dzielą się na dwie zasadnicze grupy: Odnawialne NieodnawialneDo nieodnawialnych źródeł energii zalicza się surowce, które po wykorzystaniu ulegają rozkładowi należą do nich paliwa kopalne (tj. węgiel, ropa naftowa) oraz energia jądrowa. Z kolei do odnawialnych źródeł energii należą: energia wiatrowa, wodna, słoneczna, geotermiczna (geotermalna) oraz biomasa. Na podstawie tego podziału chciałam opisać wykorzystanie energii wiatru zarówno jego historię jak i warunki, jakie muszą być spełnione, aby można było uzyskać tą energię, w końcowej części przedstawię także jak wiatr wykorzystywany jest w PolsceWiatr jako nośnik energii wykorzystywano już w starożytności. Około 1800 lat temu w krajach śródziemnomorskich i w Chinach pojawiły się pierwsze silniki wiatrowe. Od VI wieku naszej ery Persowie mieli ziarno, używając młynów wiatrowych, czyli wiatraków. W przeciwieństwie do konstrukcji, które rozpowszechniły się w Europie, perskie wiatraki miały skrzydła poruszające się w płaszczyźnie poziomej na pionowym wale. Dolny koniec wału przytwierdzony był do kamienia młyńskiego, który rozcierał ziarno na mąkę. Wczesne wiatraki europejskie były wiatrakami obrotowymi, czyli kołowymi. Ustawienie takiego wiatraka można było zmieniać stosownie do kierunku wiatru. Skrzydła poruszały się w płaszczyźnie niemal pionowej, a konstrukcja wiatraka była osadzona na centralnym słupie. Z tyłu wystawał długi drąg. Gdy zmieniał się kierunek wiatru, młynarz za pomocą tego drąga obracał wiatrak tak, aby znów łopaty skierowane były do wiatru. W ciągu wielu lat pomysłowi młynarze wymyślili sposoby wykorzystania energii wiatru także do innych celów. Na przykład, dzięki systemowi przemyślnych przekładni, wiatrak podnosił worki z ziarnem. Holendrzy zaczęli używać wiatraków do osuszania terenów nadmorskich. Jeden z ich systemów składał się z wiatraka, który napędzał urządzenie przypominające koło wodne, wypompowujące wodę z nisko położonych terenów. W Babilonii wykorzystywano je do osuszania mokradeł, a w innych krajach do nawadniania pól. W VIII wieku w Europie pojawiły się duże wiatraki 4-skrzydłowe, w których budowie wyspecjalizowali się Holendrzy. Największą rolę energia wiatru odgrywała w XVI wieku, ogólna moc młynów napędzanych wiatrem wynosiła 1 TW. W końcu XIX wieku siłownie wiatrowe przestały już być doskonalone, a jednocześnie w Danii funkcjonowało ponad 30 000 takich młynów i mniej więcej tyle samo wiatraków było w Holandii.Pomimo wszystkich zalet, wiatraki miały poważne wady. Ich działanie było uzależnione od pogody, więc w dni bezwietrzne i takie, gdy wiatr bardzo silny wiatraki nie mogły pracować. Do 1940 roku Dania miała ponad 1300 działających generatorów wiatrowych. Do 1940 roku w USA zbudowano około 6 milionów takich generatorów. Turbiny wiatrowe były dla mieszkańców wsi w ówczesnych czasach jedynym dostępnym źródłem elektryczności. W 1960 roku na świecie wykorzystywano ponad 1 milion siłowni wiatrowych. Ponowny wzrost zainteresowania szerszym wykorzystaniem energii wiatru nastąpił po kryzysie energetycznym w 1973 roku.Od tego czasu powstało na świecie tysiące instalacji wykorzystujących wiatr do produkcji energii elektrycznej. O opłacalności tych instalacji decyduje duża prędkość wiatru i stałość jego występowania w danym miejscu. Dlatego elektrownie wiatrowe są zazwyczaj budowane na terenach nadmorskich i podgórskich. W Europie Dania, Niemcy, Szwecja i Wielka Brytania znajdują się w czołówce państw wykorzystujących wiatr do produkcji energii elektrycznej. Dania eksploatuje już ponad 5 tys. wiatraków, które w 1997 r. zaspokajały 6,5% zapotrzebowania na prąd. Koleje duńskie zamierzają wybudować w pobliżu torów 80 wielkich wiatraków, z których każdy będzie miał generator o mocy 1,5 MW. Energia czerpana z wiatraków pokryje zapotrzebowanie pociągów na prąd, co znacznie obniży emisję zanieczyszczeń powietrza przez dotychczas pracujące elektrownie. Na wybrzeżach Danii ma powstać dalsze pięć kompleksów elektrowni wiatrowych liczących 500 wiatraków. W Niemczech, w landzie Szlezwik-Holsztyn wiatraki są od dawna elementem krajobrazu. Do końca 1996 r. 1000 zespolonych elektrowni wiatrowych dostarczyło 6% zapotrzebowania energetycznego w tym rejonie. W Szwecji k. Malmo pracuje elektrownia wiatrowa o mocy 3 MW. Największą w Europie elektrownię wiatrową uruchomiono w 1996 r. w Walii, w pobliżu Carno. Elektrownia ta wyposażona jest w 56 turbin wytwarzających prąd o mocy ponad 30 MW. W niektórych krajach młyny wiatrowe są jeszcze powszechnie używane do mielenia zboża na mąkę. Karierę w niektórych regionach robią, napędzane wiatrem, pompy łopatkowe, pompujące wodę ze studni, często bardzo głębokich. Tak dzieje się w Australii i RPA. Wydobytą wodę przechowuje się w zbudowanej obok specjalnej wieży. Urządzenia te również zwie się powszechnie wiatrakami, lecz są to naprawdę silniki wiatrowe lub pompy wiatroweMiędzynarodowa Agencja Energii (IEA), która ma swą siedzibę w Paryżu, ocenia, że zużycie energii elektrycznej podwoi się do roku 2020. Jeżeli założy się, iż 10 proc. tej ilości ma pochodzić z wiatru, to z tej energii należy wytworzyć 2500 - 3000 TWh/rok. W skali światowej realistyczne jest założenie, że 20 proc. energii elektrycznej będzie wytwarzane z pomocą energii wiatru. Niemcy stały się pierwszym krajem, który przekroczył pułap 2000 MW. Roczny koszt inwestycji w celu osiągnięcia 10-procentowego udziału energii elektrycznej wytworzonej z energii wiatru w światowym bilansie energii elektrycznej wyniósł 3 mld dolarów w 1999 roku, zaś w 2020 roku należy spodziewać się wydatków rzędu 78 mld dolarów. Jeżeli chodzi o korzyści dla środowiska naturalnego, do atmosfery nie trafi 69 mln ton dwutlenku węgla w 2005 roku, 267 mln ton w 2010 roku i 1780 mln ton w 2020 roku. Łączna redukcja emisji dwutlenku węgla - gazu odpowiedzialnego za ocieplenie klimatu - w latach 1999 - 2020 wyniesie 10750 mln ton. Wielkość nowo instalowanej mocy w elektrowniach wiatrowych wzrastała przez ostatnich 8 lat przeciętnie o 40% rocznie, czyniąc energetykę wiatrową jedną z najszybciej rozwijających się gałęzi przemysłu. Taki rozwój rynku był napędzany głównie przez politykę rządów, ukierunkowaną na umożliwienie energii wiatrowej konkurowania z już istniejącymi technologiami, i uznającą korzyści płynące z energii wiatrowej, które przeważnie nie są zawarte w cenach elektryczności płaconych przez konsumentów. ··Ważne podkreślenia jest to, że energia elektryczna, która jest uzyskiwana z wiatru jest ekologicznie czysta, gdyż jej wytworzenie nie pociąga za sobą spalania żadnego paliwa. Aby uzyskać 1MW mocy, wirnik takiej turbiny powinien mieć średnicę około 50m. W niektórych krajach budowane są elektrownie wiatrowe, składające się z wielu ustawionych blisko siebie turbin. Jednak opinia publiczna bywa niekiedy nieprzychylna takim inwestycjom, gdyż szpecą one krajobraz. Dlatego też przyszłość elektrowni tego typu jest niepewna. Jednak niewielkie pojedyncze turbiny są doskonałym źródłem energii w miejscach oddalonych od centrów cywilizacyjnych, gdzie brak jest połączenia z krajową siecią energetyczną.Wykorzystanie energii wiatru ma znaczenie w krajach nie posiadających innych surowców energetycznych. Warte zauważenia jest to, że sporą część energetycznych potrzeb świata może być zaspokojona właśnie przez wiatr. Trzeba go tylko „zaprząc” do pracy. Światowe zasoby energii wiatru, nadającej się do wykorzystania z technicznego punktu widzenia, to 53 tys. TWh/rok. Ta ilość energii to czterokrotnie więcej, niż wynosiło globalne zużycie energii elektrycznej w 1998 roku.Różnice w rozwoju energetyki wiatrowej pomiędzy różnymi krajami są uderzające. W znaczącym stopniu ten rozwój w Unii Europejskiej odbywał się w 3 krajach: Niemczech, Danii i Hiszpanii. Rozwój, który miał miejsce, był wynikiem udanej polityki dotyczącej energetyki wiatrowej. Polityka wspierania rozwoju energetyki wiatrowej przyjmuje różne formy - ustalanie wielkości docelowych, środki informacyjne, finansowanie badań i rozwoju, polityka rozwoju rynku - wszystkie skupione bezpośrednio na sektorze energetyki odnawialnej. Ale również inne obszary polityki mogą mieć znaczący pośredni wpływ na wykorzystanie energii wiatru, między innymi: polityka dotycząca zmian klimatycznych i inne przepisy ochrony środowiska, np. z zakresu lokalnego zanieczyszczenia powietrza, polityka rozwoju gospodarczego i regionalnego, środki zapewnienia bezpieczeństwa dostaw energii. Na poziomie europejskim polityka promowania energii odnawialnej przyjmowała wiele form. Od lat osiemdziesiątych projekty z zakresu energetyki odnawialnej były finansowane z programów ramowych Komisji Europejskiej na rzecz badań, rozwoju i demonstracji. To finansowanie odgrywało istotną rolę w rozwoju technologii turbin wiatrowych, która doprowadziła do istotnych redukcji kosztów wytwarzania energii wiatrowej. Unia Europejska zapewniała również wsparcie dotyczące pozatechnicznych aspektów promocji odnawialnych źródeł energii, na przykład za pośrednictwem trwającego programu ALTENER, obejmującego istotne środki informacyjne. W 1997 roku Komisja Europejska przyjęła Białą Księgę Energetyki Odnawialnej, w której przyjęto za cel podwojenie przez Unię Europejską wykorzystania energii odnawialnej do roku 2010 z 6% do 12%. Mimo wszystkich środków opisanych powyżej, postęp w dążeniu do tych celów w krajach członkowskich był różny. Nastąpiło zwiększenie produkcji energii ze źródeł odnawialnych, zwłaszcza energii wiatrowej. Jednak te postępy są niewystarczające, a wzrost całkowitego zużycia energii powoduje, że osiągnięcie zakładanego udziału energii odnawialnej staje się trudniejsze. Na koniec chciałam ukazać warunki rozwoju energetyki wiatrowej w Polsce. Pomiar prędkości kierunku wiatru jest podstawową informacją, którą należy przeprowadzić w miejscu przyszłej lokalizacji elektrowni wiatrowej. Pomiar należy przeprowadzić, na co najmniej dwóch wysokościach tak, aby wyeliminować niekorzystne zawirowania wiatru spowodowane obecnością drzew i budynków. Pomiary należy przeprowadzać przez jeden rok. Po zebraniu danych, wyniki pomiarów należy poddać obróbce w programie, który wskaże zasoby wiatru na badanym terenie. Pomiar prędkości rejestruje się, co 10 min. Należy także rejestrować kierunek wiejącego wiatru. ·Energię wiatru należy uwzględniać w planach strategicznych naszego kraju, jako czystą nie zanieczyszczającą środowiska. Pierwszą, podstawową wielkością przybliżającą w dużym stopniu możliwość oceny warunków wiatrowych na danym obszarze - jest średnia roczna lub sezonowa prędkość wiatru. Należy podkreślić, że użyteczną dla potrzeb energetycznych jest prędkość wiatru, co najmniej 4 m/s. Wyróżniającymi się rejonami kraju o wzmożonych prędkościach wiatru są: ·Pobrzeże Słowińskie i Kaszubskie, · Suwalszczyzna, · cała prawie nizinna część Polski z udziałem prędkości na Mazowszu i w środkowej części Pojezierza Wielkopolskiego, · Beskid Śląski i Żywiecki, · dolina Sanu od granic państwa po Sandomierz. W rejonach tych, średnie roczne prędkości wiatru przekraczają 4 m. x s-1, a w rejonie wybrzeża nawet 6 m. x s-1. Najmniejszymi prędkościami wiatru charakteryzuje się w zasadzie cała wyżynna część Polski. O ile w wyższych partiach wyżyn (tj. powyżej 300 m) prędkość wiatru się wzmaga, o tyle wszelkie obniżenia między wysoczyznami, głównie o kierunku N - S, są obszarami wyciszonymi, leżącymi w cieniu aerodynamicznym osłaniających je wysoczyzn.. Ponadto „wyciszone” pod względem prędkości wiatru są duże kotliny śródgórskie, takie jak: Jeleniogórska, Nowosądecka, Tarnowska, Niecka Nidziańska i Kotlina Raciborska. A oto informacje na temat pracujących w Polsce elektrowniach wiatrowych Aktualnie (wg stanu na 08.05.2001 r) w Polsce pracuje 29 profesjonalnych elektrowni wiatrowych o łącznej mocy 9740 kW (z generatorami asynchronicznymi) podłączonych do sieci i sprzedających energię zakładom energetycznym. Pracuje także kilkadziesiąt mniejszych elektrowni (z prądnicami synchronicznymi) pracujących na sieć wydzieloną. Są to albo konstrukcje rzemieślnicze albo konstrukcji IBMER-u (Instytutu Budownictwa, Mechanizacji i Elektryfikacji Rolnictwa w Warszawie). Uzyskanie energii z wiatru ma bardzo wiele korzyści przede wszystkim dla środowiska jak i dla nas, dlatego uważam, że powinno się rozpowszechniać tą wiedzę i korzystać w miarę możliwości z naturalnych zasobów naszego świata

Czy tekst był przydatny? Tak Nie

Czas czytania: 25 minut